# Diastereoselectivity in the Paterno-Buthi <br> Reaction of Enol Acetates and Benzaldehydes 

Sundar Vasudevan, Carolyn P. Brock, and David S. Watt*<br>Department of Chemistry and Division of Pharmaceutics and Medicinal Chemistry, University of Kentucky, Lexington, Kentucky 40506<br>Hiroyuki Morita<br>Department of Chemical and Biochemical Engineering, Toyama University, Toyama 930, Japan

Received March 10, 1994
The Paterno-Büchi reaction ${ }^{1}$ represents a direct avenue to oxetanes that will accommodate a variety of olefin and aldehyde substitution patterns. The presence of a 3 -acetoxyoxetane subunit in taxol ${ }^{2}$ raised the prospect of using a Paterno-Büchi reaction of enol acetates and benzaldehydes to introduce this particular moiety. The success of the methodology would depend upon the yields in the photoaddition reaction as well as a subsequent oxidative degradation ${ }^{3}$ of the aromatic ring and decarboxylation. ${ }^{4}$ Prior reports of the photoaddition of enol ethers, ${ }^{5}$ trimethylsilyl enol ethers, ${ }^{6}$ methyl vinyl sulfides, ${ }^{7}$ and 2,3-dihydrooxazoles ${ }^{8}$ with aldehydes suggested that the regiochemistry desired in the taxol situation was favored, but precedent for the photoaddition of enol acetates was lacking. We report a study of the photoaddition of isopropenyl acetate (1), 1-acetoxycyclododecene ${ }^{9}$ (2), and 4-tert-butyl-1-acetoxycyclohexene ${ }^{10}$ (3) with various benzaldehydes 4 .
(1) (a) Paterno, E.; Chieffi, G. Gazz. Chim. Ital. 1909, 39, 341. (b) Büchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76, 4327. For recent reviews, see: (a) Jones, G., II. Organic Photochemistry; Marcel Dekker: New York, 1981; Vol. 5, pp 1-122. (b) Braun, M. Org. Synth. Highlights 1991, 105.
(2) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggan, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
(3) (a) Caputo, J. A.; Fuchs, R. Tetrahedron Lett. 1967, 8, 4729. (b) Klein, H.; Steinmetz, A. Ibid. 1975, 16, 4249. (c) Deno, N. C.; Greigger, B. A.; Messer, L. A.; Meyer, M. D.; Stroud, S. G. Ibid. 1977, 18, 1703.
(4) (a) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901. (b) Ireland, R. E.; Norbeck, D. W.; Mandel, G. S.; Mandel, N. S. J. Am. Chem. Soc. 1985, 107, 3285. (c) Pfenninger, J.; Graf, W. Helv. Chim. Acta 1980, 63, 1562. (d) Pfenninger, J.; Heuberger, C.; Graf, W. Ibid. 1980, 63, 2328.
(5) For examples of Paterno-Büchi reactions with furan and 2,3dihydrofuran, see: (a) Griesbeck, A. G.; Stadtmüller, S. J. Am. Chem. Soc. 1990, 112, 1281. (b) Griesbeck, A. G.; Stadtmuller, S. Chem. Ber. 1990, 123, 357. (c) Griesbeck, A. G.; Mauder, H.; Peters, K.; Peters, E.-M.; von Schnering, H. G. Ibid. 1991, 124, 407. (d) Zagar, C.; Scharf, H. D. Ibid. 1991, 124, 967. (e) Buschmann, H.; Hoffmann, N.; Scharf, H. D. Tetrahedron Asymmetry 1991, 2, 1429.
(6) Bach, T. Tetrahedron Lett. 1991, 32, 7037
(7) (a) Morris, T. H.; Smith, E. H.; Walsh, R. J. Chem. Soc., Chem. Commun. 1987, 964. (b) Khan, N.; Morris, T. H.; Smith, E. H.; Walsh, R. J. Chem. Soc., Perkin Trans. 1 1991, 865
(8) (a) Weuthen, M.; Scharf, H. D.; Runsink J. Chem. Ber. 1987 120, 1023. (b) Weuthen, M.; Scharf, H. D.; Runsink J.; Vassen, R. Ibid. 1988, 121, 971.
(9) (a) Leonard, N. J.; Owens, F. H. J. Am. Chem. Soc. 1958, 80 , 6039. (b) Waelchli, R.; Guggisberg, A.; Hesse, M. Helv. Chim. Acta 1984, 67, 2178. (c) Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. Tetrahedron 1986, 42, 2971.
(10) House, H. O.; Tefertiller, B. A.; Olmstead, H. D. J. Org. Chem 1968, 33, 935 .

As shown in Scheme 1 and summarized in Table 1, the photolysis of variously substituted benzaldehydes 4 with an excess of cyclic or acyclic enol acetates led to 2-aryl3 -acetoxyoxetanes and not the isomeric 2-aryl-4-acetoxyoxetanes. The yields for these photoadditions were modest, although prolonged photolysis times led, as indicated in Table 1, to some improvements in yield. The observed regioselectivity of the photoaddition was consistent with literature precedent for related 2,3 -dihydrofuran ${ }^{5 a, b}$ and with the appearance of the C-2 methine proton as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum of the 2-aryl-3-acetoxyoxetanes produced from 1-3.

The stereoselectivity ${ }^{11}$ of the Paterno-Büchi reaction of various benzaldehydes and these unsymmetrical enol acetates 1-3 varied considerably. The photolysis of isopropenyl acetate (1) with pentafluorobenzaldehyde (4a) led to a 1.1:1 mixture of isomeric 3-acetoxyoxetanes 5 and 6. These stereochemical assignments were based principally upon the anisotropic shift of the C- $3 \alpha$ methyl group in the ${ }^{1} \mathrm{H}$ NMR spectrum by the cis-oriented C- $2 \alpha$ pentafluorophenyl group in 6 relative to the isomer 5.

Pentafluorobenzaldehyde (4a) displayed considerably more stereoselectivity in photoadditions with cyclic enol acetates than with isopropenyl acetate (1). The photolysis of an $E / Z$ mixture of 1-acetoxycyclododecene ${ }^{9}(2)$ with 4a led to a single product 7. No other isomers were detected. The cis-relationship between the aryl and acetoxy groups in 7 was again assigned on the basis of ${ }^{1} \mathrm{H}$ NMR data. Collapse of the presumed diradical intermediate in a transition state that minimized steric interactions between the aryl group and the cyclic hydrocarbon portion of the enol acetate presumably accounted for this stereochemical outcome. The cis- or trans-arrangement between the acetoxy group and the methine hydrogen of the ring fusion in 7 was not, however, apparent from spectral data alone and was established through an X-ray structure determination. ${ }^{12}$

The photolysis ${ }^{13}$ of 4-tert-butyl-1-acetoxycyclohexene ${ }^{10}$ (3) with various benzaldehydes gave a single 2-aryl-3acetoxyoxetane in which the regiochemical and stereochemical outcome with respect to the aryl and the acetoxy groups was consistent with the previous case. The photolysis of an excess of 3 in the presence of pentafluorobenzaldehyde ( $4 \mathbf{a}$ ) gave preferentially an oxetane $\mathbf{8 a}$ possessing a cis-relationship of the pentafluorophenyl and acetoxy groups. Once again, however, it was more difficult to resolve the remaining stereochemical issue in $\mathbf{8 a}$ as to the selectivity of facial attack by $\mathbf{4 a}$ on the diastereotopic faces of 3. Unfortunately, the C-6 $\alpha$ methine hydrogen in 8a was not well resolved. However,

[^0]
## Scheme 1



Table 1. Paterno-Buchi Reaction of Enol Acetates 1-3 with Benzaldehyde 4

| enol <br> acetate | benzaldehyde <br> ArCHO (4) | irradn <br> time (h) | products and <br> isolated yield (\%) |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{4 a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ | 24 | $\mathbf{5 : 6}(1: 1 ; \mathbf{1 0 )}$ |
| $\mathbf{1}$ | $\mathbf{4 a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ | 48 | $\mathbf{5 : 6}(1: 1 ; \mathbf{2 8})$ |
| $\mathbf{2}$ | $\mathbf{4 a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ | 24 | $\mathbf{7}(10)$ |
| $\mathbf{3}$ | $\mathbf{4 a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ | 20 | $\mathbf{8 a ( 1 1 )}$ |
| $\mathbf{3}$ | $\mathbf{4 a}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}$ | 72 | $\mathbf{8 a}(17)$ |
| $\mathbf{3}$ | $\mathbf{4 b}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$ | 20 | $\mathbf{8 b}(14)$ |
| $\mathbf{3}$ | $\mathbf{4 c}, \mathrm{Ar}=3-\left(\mathrm{CH}_{3} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ | 20 | $\mathbf{8 c}(6)$ |
| $\mathbf{3}$ | $\mathbf{4 d}, \mathrm{Ar}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | $\mathbf{2 4}$ | $\mathbf{8 d}(14)$ |

Scheme 2





the ${ }^{1} \mathrm{H}$ NMR spectrum of the analogous products, $\mathbf{8 b}, \mathbf{8 c}$, and $8 \mathbf{d}$ (Table 1), displayed the C- $6 \alpha$ methine hydrogen as a doublet of doublets with coupling constants, $J_{5 \alpha, 6 \alpha}$ $=c a .6 \mathrm{~Hz}$ and $J_{5 \beta, 6 \alpha}=c a .3 \mathrm{~Hz}$, consistent with an oxetane product having two widely different dihedral angles. In agreement with this finding, molecular mechanics calculations ${ }^{14}$ produced a minimized structure for $8 \mathbf{a}$ in which $\Phi_{5 \alpha, 6 \alpha}=16^{\circ}$ and $\Phi_{5 \beta, 6 \alpha}=131^{\circ}$. An X-ray structure ${ }^{15}$ again provided final confirmation for the structural assignment in 8a.

This assignment meant that the triplet pentafluorobenzaldehyde underwent a preferential addition syn to the tert-butyl group in 3. The factors which guide this unexpected diastereospecificity in this situation are unclear, but the steric influence of the tert-butyl group on attack by triplet would appear to be minimal. A kinetic preference for addition to the re-face of the enol acetate may reflect a transition state in which the acetyl group preferentially shields the si-face. Molecular mechanics calculations ${ }^{14}$ of 4-tert-butyl-1-acetoxycyclohexene (3) suggested that a conformation with the acetyl group twisted toward the si-face was more stable than other conformations with the acetyl in a quadrant above the re-face.

In summary, application of the Paterno-Büchi reaction to the synthesis of 2-aryl-3-acetoxyoxetanes proceeds

[^1]in modest yield. The result, in the particular case of the syn-addition of pentafluorobenzaldehyde (4a) to 4-tert-butyl-1-acetoxycyclohexene (3), suggests that diastereoselectivity in these cycloadditions may take an unexpected turn on the basis of steric considerations alone. The uncertain prospect for improving the yield for these Paterno-Büchi reactions also suggests that a significant modification of this reaction will be necessary before it might find application in a taxol synthesis. We are currently investigating intramolecular variants ${ }^{16}$ of this process in which the aryl ring and the acetoxy group of the enol acetate are linked through an expendable bridge.

## Experimental Section

$2 \alpha$-(2,3,4,5,6-Pentafluorophenyl)-3 $\alpha$-acetoxy-3 $\beta$-methyloxetane (5) and $2 \alpha$-(2,3,4,5,6-Pentafluorophenyl)-3 $\beta$-acet-oxy- $3 \alpha$-methyloxetane ( 6 ). To 500 mg ( $2.55 \mathrm{mmol}, 1$ equiv) of pentafluorobenzaldehyde (4a) in 15 mL of degassed, anhydrous benzene was added 511 mg ( $5.94 \mathrm{mmol}, 2.3$ equiv) of isopropenyl acetate (1). The mixture was irradiated at $25^{\circ} \mathrm{C}$ for 24 h using a 400 -W high-pressure Hg lamp (Shigemi Corp.) with a Pyrex filter. The mixture was chromatographed on a silica gel preparative plate using 1:9 EtOAc-hexane to afford 112 mg ( $15 \%$ ) of 5 and 101 mg ( $13 \%$ ) of 6. Spectral data for 5: IR (TF) $1747(\mathrm{C}=0) \mathrm{cm}^{-1}$; exact mass spectrum calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~F}_{5}$ 296.1955, found 296.1906. Spectral data for 6: IR (TF) 1744 ( $\mathrm{C}=0$ ) $\mathrm{cm}^{-1}$; exact mass spectrum calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~F}_{5}$ 296.1955, found 296.1948.
trans-1 $\alpha$-Acetoxy-14 $\alpha$-pentafluorophenyl-13-oxabicyclo[10.2.0]tetradecane (7). To $514 \mathrm{mg}(2.62 \mathrm{mmol}, 1$ equiv) of pentafluorobenzaldehyde (4a) in 40 mL of degassed, anhydrous benzene was added 1.15 g ( $5.10 \mathrm{mmol}, 1.95$ equiv) of ( $1 \zeta$ )-1acetoxycyclododecene (2). The mixture was irradiated at $25^{\circ} \mathrm{C}$ for 24 h using a 450 -W Hanovia lamp using a Pyrex filter. The mixture was chromatographed on a silica gel preparative plate using 1:1 hexane-benzene to afford $97 \mathrm{mg}(9 \%)$ of 7 as a white solid: mp 76-77 ${ }^{\circ} \mathrm{C}$ (from ethanol); IR (KBr) $1745(\mathrm{C}=0) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{O}_{3}$ : C, 59.99 ; $\mathrm{H}, 5.99$. Found: $\mathrm{C}, 60.09$; H, 6.03 .
cis-1 $\alpha$-Acetoxy-4 $\beta$-tert-butyl- $8 \alpha$-( $2,3,4,4,5,6$-pentafluorophen-yl)-7-oxabicyclo-[4.2.0]octane (8a). The procedure described in the preparation of 8 b was repeated using 104 mg ( 0.53 mmol , 1 equiv) of pentafluorobenzaldehyde ( $4 \mathbf{a}$ ) and $182 \mathrm{mg}(0.93 \mathrm{mmol}$, 1.75 equiv) of 1 -acetoxy-4-tert-butyl-1-cyclohexene ${ }^{10}(3)$ in 9 mL , of benzene to afford, after irradiation for 20 h at $25^{\circ} \mathrm{C}$ and chromatography on silica gel using benzene, $24 \mathrm{mg}(11 \%)$ of 8 a as a white solid: $\mathrm{mp} 82-84^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1733(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.5,21.1,27.0,29.4,30.6,32.9,41.3,78.1,79.2$, $85.1\left(\mathrm{t}, J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right.$ ), 110-114 and 138-148 (multiplets), 169.1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{5} \mathrm{O}_{3}$ : C, 58.16; $\mathrm{H}, 5.39$. Found: C, 58.26; H, 5.42 .
cis-1 $\alpha$-Acetoxy-4 $\beta$-tert-butyl-8 $\alpha$-phenyl-7-oxabicyclo[4.2.0]octane (8b). To 108 mg ( $1.02 \mathrm{mmol}, 1$ equiv) of benzaldehyde ( $\mathbf{4 b}$ ) in 18 mL of degassed, anhydrous benzene was added 349 mg ( $1.78 \mathrm{mmol}, 1.75$ equiv) of 3 . The mixture was irradiated at $25^{\circ} \mathrm{C}$ for 20 h using a $450-\mathrm{W}$ Hanovia lamp using a Pyrex filter. The mixture was chromatographed on silica gel using 1:10 EtOAc-hexane to afford $43 \mathrm{mg}(14 \%)$ of $\mathbf{8 b}$ as a colorless oil: IR (TF) $1740(\mathrm{C}=0) \mathrm{cm}^{-1}$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.5,21.0,27.1$, 29.4, 31.1, 32.9, 41.3, 79.3, 84.6, 87.3, 127.0, 127.79, 127.83, 137.7, 169.3. Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ : $\mathrm{C}, 75.46 ; \mathrm{H}, 8.67$. Found: C, 75.36; H, 8.69.
cis-1 $\alpha$-Acetoxy-4 $\beta$-tert-butyl-8 $\alpha$-(3-methoxyphenyl)-7-oxabicyclo[4.2.0]octane (8c). The procedure described in the preparation of $\mathbf{8 b}$ was repeated using $173 \mathrm{mg}(1.27 \mathrm{mmol}, 1$ equiv) of 3 -anisaldehyde ( 4 c ) and 439 mg ( $2.22 \mathrm{mmol}, 1.75$ equiv) of 3 in 23 mL of benzene to afford, after irradiation for 20 h at $25{ }^{\circ} \mathrm{C}$ and chromatography on silica gel using 1:10:10 EtOAc-hexane-benzene, 26 mg ( $6 \%$ ) of 8 c as a colorless oil: IR (TF) $1733(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.5,21.1,27.1,29.4,31.3$,

[^2]32.9, 41.4, 55.2, 79.2, 84.6, 87.0, 112.1, 113.5, 119.3, 128.9, 139.4, 159.4, 169.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$ : $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49$. Found: C, 72.02; H, 8.56.
cis-1 $\alpha$-Acetoxy-4 $\beta$-tert-butyl-8 $\alpha$-(3-chlorophenyl)-7-oxabicyclo[4.2.0]octane ( 8 d ). The procedure described for the preparation of 8 b was repeated using $99 \mathrm{mg}(0.70 \mathrm{mmol}, 1$ equiv) of 3 -chlorobenzaldehyde ( 4 d ) and 241 mg ( $1.23 \mathrm{mmol}, 1.75$ equiv) of 3 in 12 mL of benzene to afford, after irradiation at $25^{\circ} \mathrm{C}$ for 24 h using a $450-\mathrm{W}$ Hanovia lamp using a Pyrex filter and chromatography on silica gel using benzene, $34 \mathrm{mg}(14 \%)$ of $\mathbf{8 d}$ as a colorless oil: IR (TF) $1733(\mathrm{C=}=0) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 20.5,21.0,27.0,29.3,31.2,32.9,41.3,79.1,84.7,86.4,125.2$, $126.9,127.9,129.1,133.9,140.0,169.2$. Anal. Calcd for $\mathrm{C}_{19}-$ $\mathrm{H}_{25} \mathrm{ClO}_{3}: \mathrm{C}, 67.75 ; \mathrm{H}, 7.48$. Found: C, $67.83 ; \mathrm{H}, 7.48$.

Acknowledgment. We thank the University of Kentucky Major Research Instrumentation Bond Program for the purchase of equipment used in this study (bond ID no. 7E-8E48-25). We also thank Professor Joseph Wilson for helpful discussions and for the use of photochemical equipment. One of us (H.M.) thanks Toyama University for a sabbatical leave.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR data and assignments for 5, 6, 7, and $8 \mathrm{a}-\mathrm{d}$ and copies of ${ }^{1} \mathrm{H}$ NMR spectra for 5 and 6 ( 2 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.


[^0]:    (11) For a photoaddition of benzophenone to norbornadiene in which the product was presumed to be endo, see: Bryce-Smith, D.; Gilbert, A.; Johnson, M. G. J. Chem. Soc. C 1967, 383. For a photoaddition of benzophenone and 4,4'-dimethylbenzophenone to norbornene in which the product was reported to be exo, see: Aarnold, D. R.; Hinman, R. L.; Glick, A. H. Tetrahedron Lett. 1964, 5, 1425. For a photoaddition of acetyl cyanide to norbornene in which $40 \%$ of exo- and $37 \%$ yield of endo-oxetanes were obtained, see: Shigemitsu, Y.; Odaira, Y.; Tsutsumi, S. Tetrahedron Lett. 1967, 8, 55. For a photoaddition of diethyl oxomalonate and norbornene gave a $3: 1$ ratio of exo-:endo-oxetanes; see: Hara, M.; Odaira, Y.; Tsutsumi, S. Tetrahedron Lett. 1967, 8, 2981
    (12) Brock, C. P.; Watt, D. S.; Morita, H. Acta Crystallogr., in press.
    (13) For a leading reference to the photolysis of cyclohexene and benzaldehyde, see: Bradshaw, J. S. J. Org. Chem. 1966, 31, 237

[^1]:    (14) Molecular mechanics calculations were performed using $\mathrm{MM}^{+}$ in HyperChem (Release 3), Autodesk, Inc., Sausalito, CA 94965.
    (15) Brock, C. P.; Lloyd, M. A.; Vasudevan, S.; Watt, D. S.; Morita, H. Acta Crystallogr. in press.

[^2]:    (16) For a relevant intramolecular example involving an enol ether, see: Carless, H. A. J.; Beanland, J.; Mwesigye-Kibende, S. Tetrahedron Lett. 1987, 28, 5933.

